
Use case: AI-based Detection of Biofouling 
on Ship Hulls

Every object  that  is  in the ocean for  a  longer 
period  of  time  is  colonized  by  marine 
organisms. These organisms range from single-
celled  organisms  (microfouling/slime)  to  soft 
fouling  such  as  algae  and  sponges  to  hard 
fouling  such  as  barnacles,  mussels  and 
calcareous tube worms [1].

In  the  case  of  ship  hulls,  fouling  causes  a 
significant  increase  in  greenhouse  gas 
emissions.  Even  a  thin  biofilm  can  increase 
emissions by up to 25%. Hard fouling increases 
emissions by 50% or more  [2].  In addition to 
increased  fuel  consumption,  fouling  on  ship 
hulls  also  poses  the  risk  of  invasive  species 
being introduced [3].

In  offshore  installations,  fouling  leads  to 
increased  mechanical  stress  due  to  additional 
weight  and  increased  flow  resistance  during 
tidal currents [4]. 

For this reason, regular monitoring and cleaning 
of  these  structures  is  essential.  Historically, 
these  tasks  were  carried  out  exclusively  by 
divers,  apart  from  occasional  cleaning  in  dry 
docks.  This  is  time-consuming,  costly  and  — 
especially in offshore areas — dangerous for the 
divers. 

Recently,  remote-controlled  underwater  drones 
(ROVs)  have  been  increasingly  used  for 
inspections.  In  addition,  there  are  already 
remote-controlled cleaning robots for ship hulls. 
In the long term, the aim is to have these tasks 
carried out by fully autonomous robots (AUVs) 
[5].  This  development  towards  autonomous 
systems  promises  a  more  efficient,  cost-
effective  and  environmentally  friendly 
management of underwater structures.

One of the tasks in this process is to assess the 
fouling in order to decide whether to clean the 
structure.  This  assessment is  carried out  using 
images of the hull taken by divers or ROVs. The 
BIMCO  'Industry  Standard  on  In-water 
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Revolutionizing Marine Computer Vision

Marine computer vision remains inherently challenging due to the scarcity of annotated 
training data, hindering the development of accurate algorithms. To bridge this gap, 
Atlantic Tech & Candy has specialized in the creation of large-scale, high-quality 
synthetic subsea image datasets. In this whitepaper we showcase the efficacy of this 
innovative approach by employing it to detect and identify marine growth on ship hulls, 
underscoring its transformative potential in advancing underwater image analysis and 
maritime applications.

Figure 1: Our system adeptly analyzes original ship hull images, accurately discerning both the type and extent of 
biofouling present
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Cleaning with Capture' defines the requirements 
[6].  According  to  this  standard,  microfouling 
(biofilm),  identified  species  and percentage of 
fouling (soft and hard) must be recorded. Today, 
this is largely a manual process [7]. 

Atlantic Tech & Candy is dedicated to automat-
ing the assessment process of marine growth on 
ship hulls. Initially, we develop a sophisticated 
computer  vision model  adept  at  detecting and 
classifying various types of marine growth. Il-
lustrated in Figure 1 is a prime example wherein 
the system automatically  evaluates  an original 
image showcasing marine growth on a ship hull. 
The  model  predicts  a  corresponding  class  for 
each pixel,  such as clean structure,  microfoul-
ing, or mussel, and subsequently calculates the 
percentage  of  coverage  based  on  these 
predictions.

The remarkable outcomes demonstrated in this 
instance are made achievable through our inno-
vative  synthetic  subsea  imagery  methodology. 
In the subsequent sections, we will elucidate our 
approach in more detail. Furthermore, additional 
examples  can  be  found  at  the  end  of  this 
document.

It's noteworthy that our system's versatility ex-
tends beyond the showcased application. It can 
seamlessly  adapt  to  other  use  cases,  such  as 
identifying specific invasive species or assess-
ing marine growth on offshore structures.

Marine Computer Vision

The Core Task

To get a better understanding of what we want 
to achieve, we need to look at the core task of 
the  computer  vision  model.  Figure  2 outlines 
this task. As input we have an image exhibiting 
marine growth on a ship hull. We want to get an 
estimate of the type and amount of biofouling. 
This requires a computer vision model that im-
plements so called semantic segmentation.

The  core  task  of  semantic  segmentation  in-
volves categorizing each pixel in an image into 
a specific class, thereby providing a detailed un-
derstanding  of  the  scene's  composition  and 
structure. This technique enables precise delin-
eation of objects and regions within an image, 

facilitating applications such as calculating the 
percentage  of  coverage  by  each  biofouling 
species.  The  input  image  is  processed  by  the 
model,  resulting  in  a  semantic  segmentation 
mask as output. 

To successfully execute semantic segmentation, 
the model must undergo specialized training tai-
lored to this precise task. 

The Training Process

This  training  process  involves  exposing  the 
model to annotated datasets, where each pixel is 
labeled with its corresponding class (Figure 3). 
Through iterative learning, the model gradually 
refines its ability to accurately assign semantic 
labels to pixels, enabling it to discern intricate 
details  and  boundaries  within  images.  This 
trained model can then be deployed to perform 
semantic segmentation on unseen data.

Central challenge: lack of annotated image 
data

The central challenge in underwater image 
recognition (especially for the assessment of 
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Figure 2: The core task of semantic segmentation

Figure 3: For training, images and the corresponding 
segmentation masks have to be provided



ship hulls) is the lack of annotated image data 
[7], [8].

The training of  image recognition systems re-
quires a large amount of training data. To ensure 
that  the  image  recognition  system  is  able  to 
make reliable predictions, the training data must 
cover a wide range of possible situations. The 
underwater  world  is  especially  challenging  in 
this  regard,  due  to  the  complexity  of  species, 
light attenuation by the water, and noise created 
by marine snow.

Hull shape Water type Species

Valves, outlets, etc.
Absorption and 
scattering

Biofouling density

Coating Natural lighting Marine snow

Damages / 
markings

Artificial lighting
Camera position 
and angle

Image resolution
Water surface (re-
fraction / reflexion)

Camera 
field-of-view

Table 1: Example parameters to be covered by dataset

Table  1 provides  examples  of  parameters  that 
need to be taken into account by the image data 
in  the  case  of  marine  biofouling.  It  is  crucial 
that this training data contains a variety of ex-
amples  from  different  environments,  lighting 
conditions  and  biofouling  patterns  to  improve 
the robustness and accuracy of the system. Fig-
ure 5 gives a small impression of possible foul-
ing situations.

The acquisition of original image data by divers 
or  ROVs  that  cover  the  necessary  parameter 
ranges is  very time-consuming and expensive. 
Added to this is the necessary (manual) annota-
tion of the data. While only very simple objects 
were segmented in the example in Figure 6, Fig-
ure 4 shows examples of real  vegetation on a 

ship's hull. Here, pixel-precise annotation is ex-
tremely  time-consuming,  if  not  impossible,  as 
the individual types of vegetation are not clearly 
delineated (black-greenish biofilm, green algae, 
white barnacles and tube worms).

The  effort  required  to  capture  and  manually 
annotate  thousands  of  images  has  so  far 
prevented the creation of corresponding image 
datasets.  There  has  only  been  an  attempt  to 
classify  images  of  ship  hulls  into  3  classes 
(clean, light, heavily overgrown) and to evaluate 
them  automatically  [9].  However,  the  images 
were classified as a whole and not each pixel. In 
addition, the data set is not freely available.

Due to the lack of annotated image data, the de-
velopment of robust algorithms capable of accu-
rately interpreting underwater images remains a 
challenging task.
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Figure 5: Examples of marine growth (original imagery)

Figure 6: Example images with segmentation mask [8]

Figure 4: Example of real marine growth on a ship hull. Manual, pixel-perfect annotation is practically impossible.



Our Approach: Synthetic Underwater Image 
Data

As an alternative to real image data, synthetic 
image data is now used in many image 
recognition scenarios. For the subsea space, the 
approach has been proposed in [10], but it has 
not been implemented on a large scale so far.

Synthetic image data are digital images that are 
not taken directly from real scenes or events, but 
are  generated  using  computer  graphics  tech-
niques. These techniques can be used to create 
realistic simulations of scenes, objects or events 
that could exist in the real world. Synthetic im-
age data  is  often used in  various  areas  of  re-
search and development, particularly in the field 
of machine learning and image recognition. 

To generate synthetic imagery, usually a scene is 
modeled in some 3D environment. From there 
photo realistic images are rendered (Figure 8). 
The generation of synthetic image data must not 
be confused with generative AI approaches.

The creation of synthetic image data makes it 
possible to generate large and diverse datasets 
that  can  be  used  for  training  algorithms  and 
models.  These  datasets  can  often  be  created 
faster and cheaper than real datasets as no physi-
cal  images  are  required.  Synthetic  image  data 
can also be used to model specific scenarios or 
edge cases that  may rarely occur in real  data, 
helping to improve the robustness of algorithms.

As  an  innovative  pioneer,  Atlantic  Tech  & 
Candy  specializes  in  the  creation  of  realistic 
synthetic underwater images. This specialization 
allows us to simulate diverse underwater envi-
ronments with remarkable precision and provide 

valuable data for training and evaluating image 
processing algorithms in marine environments. 
With complete control over parameters such as 
water type, structure, species and lighting condi-
tions, we are able to quickly adapt the environ-
ment to changing requirements and new scenar-
ios. Figure 7 provides some examples of differ-
ent water types and lighting conditions.

In addition to generating realistic images, syn-
thetic image data has the advantage of being au-
tomatically annotated. In our case, semantic seg-
mentation  masks  are  thus  generated  automati-
cally.  Figure 10 and  9 show examples of ren-
dered images including the corresponding seg-
mentation masks.

We use the open source tool Blender to generate 
the synthetic image data. Figure 8 shows the 
model of an offshore installation with simulated 
biofouling in Blender. The process in which a 2-
dimensional image is generated from the 3D 
environment is called rendering.
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Figure 8: Conceptual process of generating synthetic 
images

Figure 7: Example of synthetic imagery simulating 
different water types and lighting conditions

Figure 10: Render of a ship bow with biofouling, 
segmentation mask (blue: clean hull, light blue: water 
surface, red: balanus, green: algae)

Figure 9: Render of a hull with microfouling and balanus, 
segmentation mask (blue: clean hull, turquois: 
microfouling, red: balanus)



Conclusion

Through  our  innovative  synthetic  image  ap-
proach in marine computer vision, we achieve 
substantial  enhancements  in  automatically  as-
sessing the biofouling status of ship hulls.  By 
generating  synthetic  underwater  imagery,  we 
augment the diversity and richness of our train-
ing data, enabling more robust and accurate de-
tection  and  classification  of  biofouling.  This 
breakthrough empowers us to provide compre-
hensive and timely evaluations of ship hull con-
ditions,  facilitating  proactive  maintenance  and 
conservation efforts in maritime environments. 
Additionally,  our  methodology  holds  promise 
for  applications  beyond  ship  hull  assessment, 
spanning areas such as marine ecosystem moni-
toring and underwater infrastructure inspection.

Contact

Dr. Christian Wiele
Atlantic Tech & Candy GmbH
Op de Geest 36
25826 St. Peter-Ording, Germany
email: info@atnc.ai
web: atnc.ai
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Appendix: Additional Examples
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Figure 13: Fully covered surface

Figure 11: Microfouling on damaged coating

Figure 12: Mainly thin layer of microfouling
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